If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+6x-100=0
a = 3; b = 6; c = -100;
Δ = b2-4ac
Δ = 62-4·3·(-100)
Δ = 1236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1236}=\sqrt{4*309}=\sqrt{4}*\sqrt{309}=2\sqrt{309}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{309}}{2*3}=\frac{-6-2\sqrt{309}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{309}}{2*3}=\frac{-6+2\sqrt{309}}{6} $
| 6c^2-5c+1=0 | | x÷6=4 | | 1x÷6=4 | | 2(x+7)+5(x+3)=3(x+7)+6 | | 3(x+7)+5(x+3)=3(x+7)+6 | | 3p^2-6p-72=0 | | 2=x=-5x-22 | | 2-x=5x=10 | | 8(x-1)-3(2x+2)=3x-3 | | 5x(x+9)(x-2)=5 | | 5x(x+9)(x=2)=5 | | (7a+5)^2=49a^2+35a+25 | | 16+3x=36+5x | | (7x7)+10=(7x9) | | 5x+429=8 | | 31-2z=5(z-5) | | 25.1+5y=8y+17 | | 9x-10=10x-3 | | 5w+10=6w+15 | | 7v+8=3v+28 | | d/9=21/2 | | 2u+30=7u-15 | | 8=2(h-2) | | 6x3-4=29 | | 2(4g-8)=28 | | 16=44-4f | | 32-4c=16 | | 3+3a=5 | | 7n-7=6 | | 46m+11-33m=(-28) | | 3=6÷1x | | 3=6÷x |